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ABSTRACT 
 

Measurement of stenosis due to atherosclerosis is essential for interventional planning.  Currently, 
measurement of stenosis from magnetic resonance angiography (MRA) is made based on 2D maximum 
intensity projection (MIP)  images.  This methodology, however, is subjective and does not take full 
advantage of the 3D nature of MRA.  To address these limitations we present a deformable model for 
reconstructing the vessel surface with particular application to the carotid artery.  

The deformable model is based on a cylindrical coordinate system of a curvilinear axes.  In this 
coordinate system, the location of each point on the surface of the deformable model is described by its 
axial, circumferential and radial position.  The points on the surface deform in the radial direction so as to 
minimize discontinuity in radial position between adjacent points while maximizing the proximity of the 
surface to local edges in the image.  The algorithm has no bias towards either narrower or wider cross-
sectional shapes and is thus appropriate for the measurement of stenosis.  Axes of the vessels are indicated 
manually or determined by axe s detection methods.  Once completed, the surface reconstruction lends itself 
directly to 3D methods for measuring cross-sectional diameter and area. 
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1. INTRODUCTION 

 
Measurement of carotid artery shape is important for clinical evaluation of atherosclerosis and for 
experimental studies of carotid artery hemodynamics.  Stenosis, or narrowing of the vessel lumen, of the 
internal carotid artery is directly associated with risk of stroke.  The NASCET1 found that patients with 
greater than 70%  stenosis respectively should be referred for endarterectomy or surgical removal of the 
carotid plaque.  Furthermore, measurement of stenosis by magnetic resonance angiography (MRA) 
correlates with measurements by quantitative x-ray angiography  while avoiding the risks associated with 
x-ray angiography2.  A more detailed description of shape is also useful for comp utational modeling of the 
hemodynamics which may allow for diagnositic assessment of mechanical properties of the vessel wall and 
lead to insights into the disease process of atherosclerosis 3,4,5.    
 
In this paper, we will present new methodologies for reconstructing the surface of the carotid artery from 
Gadolinium (Gd) contrast-enhanced MRA and for characterizing the shape of the carotid artery.  The 
methods include a semi-automated deformable model for vessel surface reconstruction, a method for 
joining two surfaces which is necessary at vessel bifurcations and a method for computational measurement 
of vessel size in 3D.  We will review related work in the next section.  We will then present our 
methodologies in sections 3-5. We will conclude with validation studies carried out on a digital phantom 
and on patient data in sections 6 and 7. 
 



 

 

 
2. Background 

 
The primary problem which we address is the reconstruction of the surface of blood vessels.  
Reconstruction of blood vessels is a challenging problem due to imaging artifacts which include those 
related to flow, magnetic field inhomogeneity,  imperfect timing of the arrival of the contrast agent, and the 
partial-volume effect.  Image noise is also considerable and image resolution is low relative to the vessel 
diameter.  Moreover, normal and pathologic vessel geometry is complex and therefore, a priori knowledge 
of shape cannot be readily applied to the surface reconstruction.  However, a variety of approaches have 
been taken to solving the problem of reconstructing the surface of the vessels from MRA. 
 
The most straightforward method of surface reconstruction of MRA is the isosurface method in which all 
vertices on the surface share the same interpolated intensity value6.  This methodology may also be 
combined with connectivity criteria to distinguish vessels from surrounding high-intensity non-vascular 
tissue.  However, the iso-intensity value must be chosen by trial-and-error and a single iso-intensity value 
may not be valid for the entire vessel or vessel tree. 
 
Several segmentation methods have been developed for blood vessels that objectively determine which 
voxels are inside and outside of the vessels.    Segmentation locates the surface only within the resolution 
of the image but is an important first step in the surface reconstruction.   
 
A clustering method has been developed for brain MRA which incorporates the principle of K-means 
clustering in which optimal thresholds are chosen to classify an image into a given number of tissue types.  
In this method, segmentation by the clustering threshold is modified by connectivity information.   
However, a validation study showed the method to be only moderately reliable7. 
 
The fuzzy connectivity approach has also been applied to the analysis of MRA.  This method extends the 
conventional region-growing method by assigning fuzzy membership to all points in the image rather than 
the binary Inside-Outside classification of conventional region growing.  Tissue classes are identified by 
placing seed points at various points inside and outside of the vessels.  The method has been found to be 
useful in the visualization of MRA using intra-vascular contrast where artery-vein overlap is considerable8.  
The method has not been tested, to our knowledge, on other types of MRA where tissue classes are less 
well defined. 
 
The marker controlled watershed segmentation method has been applied to a high-resolution CT image of 
the pulmonary arteries and a contrast-enhanced MRA of the thoracic aorta9,10.  Boundaries of the marker-
controlled watershed fall along the ridges in the intensity surface of the gradient magnitude image.  The 
precise location of the watershed boundary is largely independent of the placement of the markers that 
indicate the interior and exterior of the vessel.  Furthermore, smooth surfaces can be reconstructed from the 
watershed segmentation without resort to surface smoothing operations.  However, image intensity within 
the carotid artery in Gd contrast-enhanced MRA may be highly inhomogeneous due to wide variation in 
flow rate.  Due to that problem, the watershed segmentation is prone to large errors in vessels such as the 
carotid artery. 
  
Another class of methods for surface reconstruction are those which are based not only on image -intensity 
information but also on geometrical constraints or a priori knowledge of shape.  Adaptive deformable 
models have been applied to MRA and CTA which impose smoothing constraints on the surface but allow 
for protrusions in the shape which includes vessel branches and aneurysms11, 12.   One method12 was found 
to truncate vessels whose diameter is small and may be ineffective in larger vessels with stenosis.   The 
method was also found to produce inaccuracies near  bifurcations due to geometric complexities. 
 
Promising results have been obtained from methods that are specific to angiography analysis 13,14.  In these 
methods, the surface reconstruction begins by determination of the axis of the vessels by ridge tracking 
methods.  The surface is found by determining the radii associated with each point along the vessel axis 



 

 

using estimates of scale.  Radius-based surfaces can be used as initializations for a mechanical-analog 
deformable model.  This method however is highly dependent on the initialization of the vessel radii that 
may prove to be a problem with further testing. 
 
 

3. The Deformable Model 
   

3.1 The Cylindrical Deformation Process 
 
We present a deformable model for blood vessels such as the carotid artery.  The model we present 
allows for curves in the vessel axis, variability in the vessel diameter and variability in cross-sectional 
shape.    The deformable model is a surface mesh which deforms towards points of high image-gradient 
intensity while maintaining smoothness of the surface.   Our deformable model is based on a coordinate 
system which is cylindrical in nature. The vertices of the mesh are evenly spaced in the axial and 
circumferential directions and are connected with one another if they are adjacent in the axial or 
circumferential directions.   In contrast to a previous deformable model of blood vessels 14, the vertices 
deform only in the radial direction and their position is described only by their radial location.   This 
formulation of the deformation process eliminates bias towards forming tubes of smaller diameter.  
Specifics of this cylindrical coordinate system will be discussed in the next section.   

 
The surface reconstruction process is straightforward.  First the location of each vertex is initialized to be 
the point along its radial path where the maximum of the gradient magnitude occurs provided the 
gradient at that point has roughly the same direction as the radial line.  (a, ϕ, r) is the cylindrical 

coordinate of a vertex.   I is the image intensity.   rD  is the direction of a given radial line at a given 
location.  The radial location r: R2 → R of a vertex is a function of the axial and circumferential 
positions.   
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The vertices then deform so as to minimize discontinuities in the vertex radial position along the surface 
while maximizing the proximity of the vertices to edges in the image.   This is obtained an equilibration 
process analogous to that of a mechanical system acted on by internal elastic forces and external forces.  
The motion of a vertex at any given moment in the course of the equilibration is given by 
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where ir∆  is the difference in radial location between a given vertex and that of each of its axial and 

circumferential neighbors.  )),(,,( ϕϕ araI∇  is the gradient operator implemented as the convolution 
of the image with a kernel which is the gradient of the normalized 3D gaussian function whose space 
constant is 1 voxel unit.  The first term is the elastic force and the second term is the external force that 
pushes the vertices toward the peaks in the gradient magnitude image. This process is illustrated in figure 
1.  Within the cylindrical coordinate system, there  is  no bias towards forming smaller-diameter tubes.  
The elastic forces in this model pull the surface towards a tubular shape with a uniform radius that is 
centered at the axis but no radius is prefered. 
 



 

 

K1 is chosen to be sufficiently small to ensure that the system converges uniformly towards the 
equilibrium state.   The choice of K2  is made by trial-and-error for the patient data but a single value was 
found to apply well to all patient data.  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Deformation of vertices in a cylindrical coordinate system (only in-plane vertices shown).  
Deformation is produced by internal and external forces.  The internal forces push the vertices to minimize 
discontinuities in the radial location between adjacent vertices while the external forces push the vertices 
towards peaks in the gradient-magnitude image.  The dotted lines indicate radial lines.  The polygonal 
figure is the in-plane section of the surface mesh.  Fext, Fint, and Ftot are the external, internal and total 
force respectively on the vertex. 
 
   

3.2 The Modified Cylindrical Coordinate System  
 
The deformable model of the vessels is based on a modified cylindrical coordinate system (MCCS) 
which allows for curvature of the cylindrical axis.  Like the conventional cylindrical coordinate system, 
the location of all points in space can be described with the axial, circumferential and radial coordinates.  
However, several modifications must be made to accommodate curvature of the vessel axis.   
 
The first modification is that the reference orientation for the cylindrical coordinate angle must change 
along the axis so as to remain normal to the vessel axis.   We define a circumferential reference 
orientation in which minimum of change occurs from one point along the axis to the next.  Let 

)(mDa be the direction of the vessel axis at the mth point, )0,(mDr  be the reference orientation at the 

mth axial point and 0th circumferential point.  The reference orientation at the adjacent point is then: 
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The reference circumferential orientation for a curved axis is shown in figure 2. 
 
 
A second feature of the MCCS is that the radii do not emanate in straight lines from the axis at all points. 
Rather, the radial lines may be warped in areas where the vessel axis is curved.  This warping prevents 
radial lines emanating from adjacent axial locations from intersecting one another as is shown in figure 3.  
Should such intersections occur, certain locations would not have a unique set of coordinates.  
 
We create a warping of the radial lines to avoid the intersection problem based on a merging mechanism.  
The radial lines are initially evenly spaced along the vessel axis and at equal angular spacing around the 
vessel axis and are oriented normal to the vessel axis.   The initial unit radial vectors is in the direction 
given by (4). 
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The radial lines are then extended outwards at a step size, RADIAL_INCREMENT, of ½ of the in-plane 
pixel resolution.  Ideally, the radial lines should represent the shortest path from any point to the vessel 
axis.   When this is not true, it is evidence of the condition where intersections between radial lines will 
occur.  Thus, as the radial lines are being extended outwards, each of the radial lines is checked at each 
step to see if the origin of that particular radial line, r(i, j, 0), is the closest of all the discrete locations 
along the vessel axis.  If not, the radial line is considered terminated at that point and is not extended 
further along its original direction. 
 
 
If   the distance from (a i, ϕj,  rk(a, ϕ))  to the axis is less than k * RADIAL_INCREMENT, then that 
particular radial line is terminated at the previous step,   kmax (i, j) = k-1. 
 
Once the radial lines have been fully extended  to k = klimit, the terminated lines are extended by merging 
them with the closest radial lines that have not been terminated.  In pseudo-code: 
 
For k = klimit - 1 to k = 0 

For all i and j,  if kmax(i, j) = k  { 
 kmax(i, j) = klimit 

For k′ = k+1 to k′ = klimit     
rk+1(ai, ϕj,k+1) = rk+1(ai,nearest, ϕj,k+1)  }   
   

 
Where  kmax(inearest, j) =  klimit. 

Meshes constructed from vertices at constant radial locations for a curved axis are shown in figure 4. 
3.3 Merging Vertices 
 
The cylindrical deformation process could be applied directly to the modified cylindrical coordinate 
system.  However, bunching of vertices will occur where radial lines merge.  Where such bunching 
occurs, the effective elasticity of the surface become significantly greater which reduces the surface 
smoothness.  This effect is removed by merging vertices in the deformation process to match the merging 
of the radial lines.  This precludes two vertices from co-existing on the same radial line.  The procedure 
for merging vertices is as follows.  The vertices initially exist for all circumferential and axial locations.  
After a primary deformation phase (200 iterations), vertices are merged with their axial neighbors if 
either of the vertices is at a point where the radial lines of the two vertices are merged.  The radial 
location of the resulting vertex becomes the average of the locations of the vertices from which it was 
formed. Henceforth this vertex deforms as a single vertex.  The neighbors of this resultant vertex are 
those of the merged vertices.  However, the circumferential neighbors for the resultant vertex will 
accumulate relative to the axial neighbors.  Therefore, to maintain a balance between the axial and 
circumferential component of the elastic force, the total circumferential elastic force must be rescaled.  
With regard to the equation of motion (equation 3) the elastic component ir∆ , the difference of radial 

location between a vertex and its neighbors, must be modified so that the circumferential and axial radial 
differences are added separately. 
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where N is the number of circumferential neighbors of a merged vertex.   



 

 

Figure 2.  Reference orientation for circumferential coordinate angle.  The reference angle on which the 
circumferential angle is based is dependent on the curvature of the vessel axis. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  The modified cylindrical coordinate system (MCCS).  A cylindrical coordinate system cannot be 
constructed from a curved axis using radii which are strictly normal to the axis.  The problem with that 
coordinate system is shown on the left.  For any given point, there will not be a unique axial and radial 
coordinate due to intersection of the radial lines.  This problem is solved by merging radial lines in the 
MCCS (right).   The radial coordinate at each point in the MCCS is the distance to the nearest point on the 

axis.  
Figure 4.  Isodistance surfaces.  Surfaces are constructed whose vertices are at equal distances from the 
given axis.  The meshing is done according to the modified cylindrical coordinate system (MCCS). For 
small radii in the MCCS (top), vertices exist for each circumferential and axial position.  At larger radii, 
the vertices merge with one another in the axial direction to eliminate criss-crossing of radial lines.  



 

 

 
3.4 Formation of vessel axis  
 
The primary method of user interaction is the initialization of the deformable model by indicating points 
along the axis of the vessel.  We found that the vessel axis could be easily and reliably determined by 
picking points on axial views of the images with side-by-side view of an isosurface piercing the slice to 
provide context.  This method is shown in figure 5.  Points were indicated at every 5-20 slices along the 
vessel axis.   
 
The spacing of points on the axis was increased to match the resolution of the image.  We interpolated 
between each of the points specified by the user so as to describe the vessel axis as a contiguous path of 
voxels from one end of the vessel to the other.  We then smoothed the path using a 10th order B-spline.  
 
 
3.5 Anchor points  
 
In some cases it is also desirable to also indicate specific known boundary locations.  This is readily 
included within the mechanism of the deformable model.  For a given point indicated by the user, the 
closest vertex of the deformable model is anchored at that location during the mechanical deformation.  
As a result, the surface will be pulled towards that location. Since the elasticity of the model is relatively 
low, for the anchor point to produce enough influence, the neighboring vertices (within 2 axial or 
circumferential positions) were also fixed at the same radial value as the anchor point.   
 
 
 
 

4. Results 
 

 
Good results for surface reconstruction have been obtained in contrast-enhanced MRA images (Intra-
venous injection of Gd -DTPA, Spoiled Gradient Recalled Echo sequence, 256x224 matrix, 2-mm thick 
slices, 0.5 NEX,  in-in-plane sinc interpolation to 512x512 and 2X out of plane sinc interpolation, 
35x35cm field of view) of 8 carotid arteries from 5 subjects  (2 vessels were omitted because segment of 
vessel was missing due to extreme stenosis and 1 vessel was omitted due to severe image artifacts). We 
deform the model in 200 iterations prior to merging the vertices and 200 iterations after merging of the 
vertices.  We use a value of 0.05 cm for the iteration step size  (K1) and a value of 2x104 cm-1  for the 
elasticity constant (K2).  The image intensities are in the range of 0 to about 300.   For all vessels, the 
deformable model was applied to both the common carotid-to-internal carotid and to the common 
carotid-to-external carotid.  The surfaces from both were superimposed for visualization. 
 
For two cases where stenosis of the internal carotid artery occurred, it was necessary to add an anchor 
point at the groove between the internal and external carotid arteries to obtain an accurate surface 
reconstruction (location is shown in figure 6).  Errors otherwise occurred at this location due to poor edge 
quality and the interference of the external carotid artery in the continuity of the cylindrical vessel 
surface. Otherwise, the degree of stenosis observed in the reconstructed surfaces was nearly that 
determined from the source and MIP images in the two vessels.  (20% stenosis in model vs. 20-39% 
stenosis measured from MIP, 45% stenosis in model vs. 45-50% stenosis measured from MIP) Normal 
vessels showed no signs of stenosis but in two cases the model of the internal carotid mistakenly included 
a section of the external carotid where the two vessels nearly overlap.  This problem could be removed 
by increasing the elasticity constant K2 to 6x104cm-1. 
 
The result on one artery where significant stenosis is evident is shown in figure 6. 



 

 

 
 
 
Figure5. Identifying points along the axis of the vessel.  A cropped portion of the carotid MRA is shown 
by itself and with a 3D isosurface (right) to provide anatomical context which helps to follow a given 
vessel from one axial slice to another.   

 
 
 

 
 
Figure 6. Surface reconstruction of carotid artery with stenosis (black arrow).  Image is shown as 
maximum intensity projection of cropped region from sagittal view (left), as 3D surface from deformable 
model of both internal and external carotid arteries (right) and as wireframe mesh (left)(only internal 
and common carotid artery shown in wireframe view). In addition to identifying points along the vessel 
axis, the user also indicated a point at the groove between the internal and external carotid arteries 
(white arrow). 



 

 

 
5. Measurement of Stenosis 

 
Stenosis of the carotid artery is conventionally measured from a 2D projection image.  The standard 
definition of the degree of stenosis is based on the comparison of the vessel diameter at the stenosed 
location with the normal vessel diameter usually measured at a downstream location1,15.  Of course, in 
this measurement, the projection angle may be important due to orientation effects so a variety of 
projections are obtained and the stenosis measurement is made from the projection where the degree of 
stenosis is most severe.  This method of stenosis measurement could also be applied to vessel surfaces 
but a 3D method is preferable since any given projection contains only limited information of the 3D 
shape.  We propose a new definition of vessel diameter which is consistent with the conventional 
projection-based diameter measurement for convex vessel cross-sections and we provide methods for 
making this measurement. 
 
We define the vessel diameter at any point along the vessel to be that of the largest sphere which can fit 
entirely within the vessel at that point.  This is comparable to the measurement of diameter in 2D 
projection images which amounts to measuring the diameter of the largest circle which can fit in the 
vessel at a given point.  This is shown in figure 7. 

 
Determination of the maximal spheres from a surface mesh of the vessel requires several steps.  The first 
step is to convert the surface mesh to a high-resolution binary mask.   This conversion is done by finding 
all points within the high-resolution image which intersect with any of the surface triangles to produce a 
shell in the binary image in which all points on the boundary are turned on.  A region-growing operation 
is then carried out such that all points within the vessel are also turned on.  
 
The second step in measuring vessel diameter is skeletonization of the binary mask.  A variety of 
skeletonization algorithms have been proposed for 2D and 3D binary images1617,18,19 but the most 
appropriate for this application is the Ordered-Region Growing (ORG)  skeletonization algorithm20.    
The ORG skeletonization will the largest sphere which can pass within the vessel between any two given 
points.   Thus if two points are specified to either side of the stenosis region, the maximal sphere which 
can pass through the stenosis will be obtained.   The skeletonization proceeds as follows.  First, the 
binary mask is transformed to a distance map in which the intensity at each point is the distance from that 
point to the nearest point outside of the vessel. A growth process is initiated from one of the seed points, 
s0.  A growth process then occurs in which growth proceeds from the single point on the boundary of the 
growing region, Bn which has the highest intensity or in this case the greatest distance value.  This 
process is repeated until the second seed point is reached.    Formally, I: RN

 → R is the image intensity 
and Neighbors is the set of neighbors of any given point in the image.  Wn is the set of points within the 
grown region at any iteration. 
 
sn = Max(Bn)  = {x ∈ Bn |  ∀y ∈ Bn , I(x) ≥ I(y)}      (6) 

Gn = Neighbor(sn) \ Wn         (7) 

Bn+1= (Bn ∪ Gn) \   sn         (8) 
 
 The skeleton of the vessel is then the path of the growth from the start seed point to the end seed point.  
The distances at each point along the vessel skeleton are then the vessel radii at those points. 

 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Measurement of the minimum diameter of vessel in a projection image is equivalent to 
determining the largest circle which can pass through a vessel (Profile of vessel shown in darker lines).  
This concept can be extended to 3D by determining the largest sphere  which can traverse the vessel within 
the 3D boundaries of the vessel. 
 
 
 

6. Conclusions  
 
 
Images of the carotid artery lumen can now be obtained non-invasively and in 3D with MRA.  However, 
quantification of shape from these images is challenging due to image noise and artifacts.  We have 
presented, in this paper, a semi-automated method for reconstructing the surface of the carotid artery and 
a method for characterizing the lumen shape.  These methods are straightforward and require only the 
input from the user of a limited number of points along the central axis of the vessel and a single point in 
the groove where the internal and external carotids join.  Unlike a previous deformable model of the 
carotid artery, exact determination of the vessel axis is not important and the model has no known bias 
towards producing smaller or larger diameter vessels.  Further testing of the method will be carried out 
including comparison with x-ray angiography. 
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